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S T R E S S  S T A T E  O F  A C Y L I N D R I C A L  S H E L L  

L O A D E D  A L O N G  S E G M E N T S  O F  T H E  D I R E C T I N G  C I R C L E  

B. V.  Nerubailo,  V.  P. Ol'shanskii, and 'r. B. Nerubailo UDC 539.3 

Simple closed expressions for forces and moments in a circular cylindrical shell loaded uniformly by 
radial forces along segments of the directing circle are obtained by asymptot ic  synthesis methods (ASM) in 
[1, 2]. In practice, the pressure distribution can be significantly nonuniform, especially when a shell is in 
contact with other rigid bodies [3, 4]. For this reason, the results of [1, 2] are extended below to the case 
of a nonuniform distr ibution of external load. Unlike in [5], where a two-dimensional Fourier transform was 
employed, the solution in our case is constructed using an ASM. This method gives simple compact relations 
for forces and moments  for a sufficiently general external load. 

We denote the thickness and radius of the shell by h and R, and the elastic modulus  and Poisson's ratio 
of the shell material by E and v. We assume that  the cross section x = 0, to which an external load is applied, 
is sufficiently distant from the shell edges, so that  the influence of the edges on local bending can be ignored. 
That  is, the shell is considered infinite in the axial direction. This simplifying assumption is acceptable for 
a self-balanced external loading which is cyclically symmetrical about the angular coordinate fl composed of 
k normal forces applied periodically along the directing circle. Each of the forces P is distributed along a 
circular arc with length 2floR by the law f ( f l )  = f ( - f l ) ,  so that  

80 80 
P = R / = 2R / 

-80 o 

As in [1, 2], we represent the local stress state as the sum of the principal state and a simple boundary 
effect. We describe the former by the Schorer type equation [6] 

04r 2 08~ R2 
+ c - - ~ -  ~-hp(a, fl), (1) 0a4 

where a = x / R ,  c 2 = h2/(12(1 - v2)R2), �9 = ~(a,/3) is a resolving function, and p(a ,  fl) is the density of the 
external radial load. 

In the principal state, the bending moments  G p and G p and the tangential  forces T p and T p are 
expressed in terms of the function �9 as 

D 06(~ Eh 3 Eh  c94O 
G p = ~G p = - v  R2 Otis, D - 12(1 - ~,2) - Ehc2R2, Tp = R Oa2c3fl 2' Tp = 0. (2) 

The stress state of the simple boundary effect is given by the equation [1] 

04w 
Oa4 + c-2w = R2D- lp (a ,  fl), 

which is writ ten with respect to the lateral deflection (or radial displacement) w = w(a,  fl). This corresponds 
to the force factors 

D 02w Eh 
Gb=vGb=-~,R----70---7, T : = -  w, T b = 0 .  
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Note that  here and below the superscripts p and b indicate that a factor belongs to the principal state or to 
the boundary effect, respectively. 

The external-load density is given by p(a, fl) = q(fl)R-l~5(a - 0). Here 

q ( f l ) = q ( f l 4 - - ~ ) =  { f(fl) for f le [ - r io , r io] ,  

0 for f i e  [ - k , - f l 0 )  U( f l0 ,  k ] ;  

oo  

and ~(a - 0) = ~r -1 f cos ha  dh is the Dirac function. 
0 

We expand the even 2~r/k-periodic function in a cosine series: 
OO 

q(fl) = ~ q. cos knfl. (3) 
n=O 

The coefficients are written as the integrals 

k Zo kP 
qo = - f f ( f l )  dfl - 2~r R' 

0 

qn = 2--kr #f~ cos knfl dfl. 
0 

(4) 

For each of the harmonics n, we construct solutions of Eq. (1) that  decrease at 4-00. Such a solution 
does not exist for n = 0. For this reason, the axisymmetric component is taken into account only in the 
boundary effect, while for the principal state we assume 

04r 20sr 
Oa 4 + c Otis = 

j 7rEh ~-" qn cos knfl cos h a d h .  
. = 1  0 

This equation has the solution 
O0 R oo [ cos ha  

r  fl) = ~Eh  ~2 q- cos knZ j h, + c2(kn), dh. 
n = l  0 

from which, for the force factors, in accordance with (2), we have 
130 

_ uD oo [ cosha  
G1 p p G  p ,~REh ~ q"(kn)6 cos k=~ J h4 + d (k=) ,  dh. 

n = l  0 (5) 

7 h2c~ 
T~' = - ;1  .=1 q.(k,~) 2 cos k,~fl 0 h4 + c2(kn)s dh. 

We restrict ourselves only to the force factors in the loaded cross section a = 0, in which they reach 

0 h4 + c2(kn)8 -- 4(kn)6cv'~' (6) 

maximum values. Taking into account that  [7] 

h 2 dh ~rv~ 
0 h4 + c2(k,~)s 4(kn)2v~' 

we obtain simpler expressions in place of (5): 

1 uny'~,_~ (qt9)'~" - q 0 ) .  (7) T p - 2 v ~ ( q ( f l ) -  qo), G p = vG p - 

These relations are writ ten with allowance for series (3). 
Solutions of the boundary-effect equation that  decrease at -4-oc are well known [8] and will not be 

writ ten here in complete form. In the loaded cross section (a = 0), they have the form 
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Accomplishing the synthesis of stress states (7) and (8), we write relations for forces and moments: 

14 ~/-~( k/3~ 
TI(0,/3) = T p + T1 b = - 5 r  u 2) q(fl)- ~ f f(13)d/3), 

0 

(9) 
uk ~o 

k ao 

G2(O, fl) = G~ + G~ - 4r : u  2) ((1 + u)q(fl)- -~ fo q(fl)dfl). 

It follows from these relations that the distributions of the force factors in the stress state with respect to the 
angular coordinate differ from the external-load distribution only by the multiplicative term and constant. 
The latter distribution can be quite arbitrary but admits a converging cosine Fourier series expansion. 

As an example, we consider an external load with density 

PF(y + 3/2) (1 -/32)t~ 
f(/3) = V~V(y + 1)/30R /3o2 ] , /3 E [-/30,/30], (10) 

where F(z) is the Euler function; z is an argument, e.g., z = p + 1; and p/> 0. The restriction on # is due to 
the Dirichlet theorem on a Fourier series expansion of a function. Relation (10), in particular, yields a uniform 
distribution (y = 0), a Hertz-type distribution (p = 1/2), etc. 

We compute the integral entering into (9): 

a/o Pr(g + 3/2) /32). PrO, + 3/2) P 
f(/3)d~ = v/~F(y + 1)~0R 1 - 82 ] v ~ F ( y  + 1)/30R cos 2g+1 tdt = --'2R J 

0 0 0 

Here we take into account that [7] 

x/2 (F(y + 1)) 2 22tJ+l 
f r(2  + 2) _ r ( .  + 1)r(.  + 3/2 ). 0 cos 2~+1 tdt = 22~ F(2# + 2) ' V~ 

As one can see, the chosen power distribution of load (10) satisfies condition (4). In this case, using 
relations (9) for the force factors, for the center of the loaded segment we obtain 

P Cc/3(1- u2) /~_( r(# + 3/2) k/3o'~, 
T,(O,O)=- 2/30R V - f ~ u  ~ J  

P r - ~2) ~ r(~ + 3/2) 
7'2(0,0) = 2/30R , . -  v~F(#  + 1)' (11) 

P vr~  [(1 _F u ) r (~  + 3 / 2 ) u k ] ,  
c,(o,o) = 4r - ~2) v~r(~ + 1)no 2~j 

P ff-~[(l + u," F ( .  + 3/2) k ] G2(0,0) 

These expressions can be further simplified for constant load density. When # = 0, F(3/2) = Vff/2, 
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TABLE 

7 

I.i 0.5 
2.2 1.0 
3.3 1.5 
4.4 2.0 

tl 

1.40 
0.69 
0.45 
0.33 

t2 

1.41 
0.71 
0.43 
0.35 

gl 

1.41 
0.70 
0.47 
0.34 

g2 

1.40 
0.69 
0.46 
0.37 

TABLE 2 

w 7 

1.1 0.5 
2.2 1.0 
3.3 1.5 
4.4 2.0 

tl 

0.69 
0.55 
0.43 
0.34 

t2 

0.69 
0.55 
0.43 
0.34 

gl 

1.35 
0.77 
0.51 
0.37 

g2 

1.35 
0.77 
0.51 
0.37 

and r ( 1 )  = 1, we have 

T1 (0, 0) -- 
P ~/3(1 - ~,~) P r  - ~,;) 

47r~ov/~  (a - -k~o) ,  T2(0 ,0)=  4f~ov/-R- ~ , 

P 
l h [ ( 1  q- v)Tr - vk~o], (12) 

G,(0,0) -- 87r~or - v 2) 

P 
IR[(1 + ~,)~ - k~o]. a~(o ,o)  = 8 ~ 0 r  - ~) 

Relations (12) are completely identical to those in [1, 2]. Thus, solutions (9) and (11) should be regarded 
as extensions of the known results (12) to the case of a nonuniform distribution of the load along the segments 
of the directing circle. 

In constructing approximate solutions herein, the synthesis of the stress state was performed only for 
two components, that is, the third (flexural) component was disregarded. It is demonstrated in [1, 2] that 
this is allowable in calculation of G1 and G2 for a load distributed uniformly along segments, provided that 

vf-h/R. In this connection, the question arises of whether it is possible to extend this inequality to the Z0 >/ 

case of a nonuniform distribution. To get an answer, we compare values of the forces and moments obtained 
from (11) for # = 1/2 with those obtained in [5] using the two-dimensional Fourier transform based on the 
Vlasov-Donnel equations. Solving the problem for dimensionless forces and moments at # = 1/2, k = 1, 
a = 0, and fl = 0, we come to the expressions 

27rhTj(O,O) = - (BoVo + CoUo + BIV1 + C1U1), 
tj = P r  - v 2) (13) 

4~'aj(0,0) _ BoUo - CoVo + BIU,  - C1V1 (j = 1--~), 
gJ - P(1 + v) 

where Bm = berm(~); Cm = beirn(~); U m =  kerm(~); Yrn = keirn(~); ~ = ( 1 / 2 v ~ ) Z 0 r  ~ ) @ h ;  Brn, 
Crn, Urn, and Vrn are Thompson functions. 

For comparative analysis, we assume that v = 0.3, R / h  = 400, and t3o = w C h / R .  The results of 

calculations by formulas (11) and (13) are presented in Tables 1 and 2, respectively. For values of the Thompson 
functions we refer to [9]. Analysis shows that for a nonuniform load distribution (in particular, by the Hertz 

law) the validity of the inequality/3o > / ~  (or w >/ 1) suggested in [1] gives satisfactory agreement between 
the moments obtained using the ASM and those obtained by means of equations of the technical moment 
theory of shells. For tangential forces, such agreement is achieved for loaded segments of much greater lengths, 

i.e.. starting with/30 t> 3 @ - - R  (or w/> 3). Within the framework of the above inequalities, the advantages of 
the ASM are obvious, since it yields simpler closed solutions which are sufficiently exact and convenient for 
engineering calculations. 

We now consider an infinitely long shell under the action of a normal load which is piecewise constant 
in the longitudinal direction and piecewise linear in the circumferential direction. For such a load, Fourier 
series expansions along the contour and representation by a Fourier integral in the longitudinal directions are 
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valid: 

4 yl  
p(a, fl) = -y~oPO y~ wnsinknfl sinaoAcosaAdA. (14) 

n = l  0 

Here p0 is the amplitude of the normal load; a0 is a parameter that characterizes the extent of the loaded 
region along the ruling (the length of the region is 2a0R), and Wn = (i/n2)(sin knflo - knflo cos knflo). 

Using the approximate equations describing elementary stress states (the principal state, the boundary 
effect in the zone to which the load is applied, and the bending state), we obtain a solution of the problem for 
the particular case of a load applied along the contour segments where a0 --+ 0. The total stress-strain state 
of the shell is represented as a sum of three elementary states: the principal state, the local boundary effect 
(when n ~< n*), and the bending state (when n > n*). This constitutes, in essence, the third ASM [2]. Thus, 
we find the following expressions for the most important factors of the stress-strain state of the shell: 

ER 2 9 ( 1 - v  2) ( R'~ 2 f-R ~-, nwn [qan(a) + r 
Mo w(o~,fl)-- ~r r ~--~")flo 3 ~,~-) Vh& r 1)Z 

3r - v2) R~/-~ 4/to 2 h 9(1 - u2) ( ~ )  3 r'-k~fi~o 3 + [~o(a) + r + ~z.., -~--}(1 + kna)e -k ' a  sin knfl, 
n*+l 

R~ 3r - ~ ) / ~  -" 
_ 4 k 2 . 2  _ 1 [ ~ . ( a )  - r  sin kn/~, 

M0 R2 3r v 2 ) ,--3- T~(a, Z)= f,~,~ ~,r,a, + r (15) 

M0 Gl(a,  f l )=  S~/3(1- v2)f102 [~o(a)- r 

3u:_ '/-~---R ~ nw. [V~n(a) + r 
4~r ~,~)~o ~ v ,,=, ,/k~n~ - i 

3 n~+w_.~[lq_v_(l_v)kna]e_knasinknfl, 6 4rk2flg 1 

R ~ G2(a, fl) = 3 "VR ~ 6 nwn [~On(a)+ ~bn(a)] sin knfl 
4~r r  v2)flo3 .~==1 x/k2n2 - 1 

3v ~ f ~  4~rk2flo 3 3 ~+ [ ~ ( a )  - ~ ( a ) ] . ; ( ~ )  + ~ [ I  + ~ + (I - ~ ) k . a ] e  -k"~ sin k . ~ ,  
-t 8r ~ v2)fl 

n" 
2 ~ , s i n k n S .  

Here 3//o is the total moment transmitted to the shell through one of the k contour segments (the moment 
is" equivalent to the normal load); the functions qo~(a), ~bn(a), ~o(a), and ~b(a) are determined from the 
formulas [2] ~ n ( a ) =  exp(-#na)  cos #ha, ~n(a) = exp(-#na)sinpna, T(a) = exp( -qa)  cos r/a, and ~b(a) = 
exp(-qa)  sin r/a. 

Note that the harmonic number n* for "gluing" of the solutions of the principal state, boundary effect, 
and bending state written in the form of (15) is found by using the well-known formula relating the harmonic 
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TABLE 3 

General 
theory of shells 

n 

1 0.0170 
2 0.0144 
3 0.0118 
4 0.0080 
5 0.0040 
10 -0.0018 
15 0.0008 
20 -0.0003 
30 0.0001 
4O 0.0001 

I Principal 
state 

0.0137 
0.0108 
0.0084 
0.0058 
0.0030 

-0.0024 
0.0015 

-0.0006 
0.0002 
0.0001 

Local 
boundary effect 

G2~/P 
0.0036 
0.0031 
0.0025 
0.0017 
0.0009 

-0.O0O7 
0.0005 

-0.0002 
0.0002 
0.0002 

Principal state plus 
boundary effect 

0.0173 
0.0139 
0.0109 
0.0075 
0.0039 

-0.0031 
0.0020 

-0.0008 
0.O004 
0.0003 

Bending 
state 

0.0986 
0.0430 
0.0225 
0.0115 
0.0048 

-0.0019 
0.0008 

-0.0003 
0.0001 
0.0001 

number, the number of loads, and the relative thickness of the shell [2]: 

n 4 ~ (2/k4)(1 - v2)(R/h) 5/2. (16) 

The value of n obtained from (16) and rounded to the nearest integer is the desired n*. The values 
of n* calculated from the above formula are identical to the corresponding values determined by a numerical 
experiment for various parameters k, h/R, and fl0. To illustrate this, we give numerical data for a shell with 
relative thickness h/R = 1/100 loaded by two diametrically Opposite loads for which k = 2 and r = 0.25. 
The maximum values for the annular bending moment G2n/P are presented in Table 3 for various n (from 
n = 1 to n = 40). Some intermediate values are omitted to save space, but this does not make the table less 
informative. The numerical information was obtained from the equations of the general theory of shells in 
[10], the equations of semi-momentless theory (the principal state), and the equations of the boundary effect 
and bending state. 

As for a piecewise constant load along the contour [1, 2] and for a sufficiently arbitrary load symmetrical 
about the coordinate origin (convenient formulas have been obtained herein for the latter case), it is of interest 
to construct simple calculation formulas for the case at hand, i.e., when the load is statically equivalent to 
one or more local circumferential moments. Simple computation formulas suitable for a certain range of the 
load parameters k and r can be derived by simplification of the sufficiently general solution (15). In this 
case, as before, we assume that in a certain range of the parameter fl0 the solution can be written solely on 
the basis of semi-momentless and boundary-effect equations. Solutions (15) for the principal state and the 
local-boundary effect writ ten as series are then assumed to be valid over the entire range of harmonic numbers: 
n = 1, 2, 3 , . . . ,  n*, n* + 1, . . . ,  ee. This becomes possible owing to the fact that  in a certain range of the 
parameter/30 the partial sum (starting with a certain n > n* up to infinity) makes no substantial contribution 
to the total sum of the series. Since the series become infinite, it becomes possible, in some particular cases, to 
find their sum in finite form and to write simple formulas without series for the desired force and strain factors. 
Naturally, in this case, the region of applicability of the resulting formulas is narrower in comparison with 
solution (15), and it becomes necessary to establish the boundaries of the region, for example, by comparison 
with the exact data, as is done later. It is seen from Table 3 that for large harmonic numbers, the error in 
determining the bending moment using semi-momentless theory can be substantial if the shell is acted on by 
a sinusoidal (or cosinusoidal) load rather than a localized load considered herein. For instance, when the load 
is p0 sin 30t3, the solution yielded by semi-momentless theory differs by a factor of two from the exact solution 
(yielded by the general theory of shells), while the bending state yields a value that is completely identical to 
that obtained in general theory. 

In the case of an infinitely long shell, the equilibrium condition implies that k >/ 2. If we assume a 
strong inequality k2n 2 ~;> 1, which means transition from the resolving equation of semi-momentless theory 
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1.0 
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! 
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Fig. 1 
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I 

0.ks 0:5 
Fig. 2 

to the simplified equation (1), for a = 0, we have 

3r ?in /30 
M0 n=l 

R GP(0,/3) = 33~-~n~--]~_l(s inkn/3~176176 
Mo 4rk~/3(1 _ v2)/3 _ \ n 2 

The series that enters into the expressions for the longitudinal forces and bending moments can be 
summed up. Then, after certain transformations for/3 =/30, i.e., for the boundary of the loaded region, we 
obtain the final formulas 

Mo R2 TP(O'/3~ = _ 3~3(18/32 v 2) , e~(o,/30) = 16r 

Similar formulas can be found for the local boundary effect. For/3 = rio, they take the form 

3~/3(1-  v2)~/~ R Glb(0,/3o) = 3 2 ( - -  ~ 
RM0 Tb(0'/3o)= 8-/30 ~ ' M0 16r v2)/3 " 

(17) 

(is) 

Thus, the longitudinal force in the shell is determined as a solution of the principal state Tl(a, ~3) .~ 
TP(a,/3), and the annular force as a solution for the local boundary effect T2(a,/3) .~ Tb(a,/3). Complete 
formulas for the bending moments are obtained by summation of the solutions for the local boundary effect 
(18) and for the principal state (17). For the moments at the boundary/3 =/30 of the loaded region, we find 

~ o  3(I + v)L ~2)flo2 R G,(0,/30)= G2(0,/30) = 16r (19) Mo 

It is of interest to compare the numerical results yielded by the approximate formulas and the exact 
solution to refine the region of their applicability. Good agreement is obtained between the data yielded by 
f6rmula (19) and the exact solution over a wide range of the loaded-region parameter/30 >/ (h/R) 1/2. For 
smaller values of the parameter, the difference can become more substantial. It then becomes necessary to 
take into account the bending state, which is a component of the solution (15) and becomes more and more 
powerful as/30 decreases. As/30 ~ 0, this state begins to play a determining role. This can be easily seen from 
the dependences of the longitudinal (Fig. 1) and annular (Fig. 2) bending moments on the parameter/3o of the 
extent of the loaded region for k = 2 and R/h = 100. The solution given by formula (15) is shown by curve 
1, and that provided by (19) is shown by curve 2. Curve 3 corresponds only to the solutions of equations of 
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the boundary effect (Fig. 1) or equations of the semi-momentless theory of shells (Fig. 2). These solutions are 
written as formulas (18) and (17), respectively. Thus, curve 3 characterizes the contribution of the boundary 
effect and the principal state to the total stress state (to the total value of the bending moments which are 
the main force factors). Note that solution (15) shown by curve 1 in Figs. 1 and 2 is completely identical to 
the solution provided by the general theory of shells (the error does not exceed 5%). 

This work was supported by the Russian Foundation for Fundamental Research (Grant N2J000). 
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